EXAMEN

Regulación Automática 3° Minas

12 de diciembre de 2009

Item n° 1 (1 puntos)

Elaborar un controlador por realimentación de estados para la planta

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u
y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

de modo que en lazo cerrado exhiba sus polos en $-3.\,$

Item n° 2 (1 puntos)

Determinar la formulación entrada-salida (FT) Y(s) = G(s)U(s) para la planta de la cuestión anterior

Item n° 3 (1 puntos)

Elaborar el modelo lineal (función de transferencia) que aproxima la planta no lineal en el punto operativo u=1. La planta no lineal se rige por las ecuaciones:

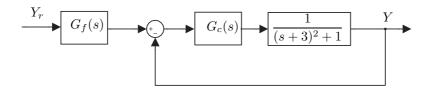
$$\begin{array}{rcl}
\ddot{x} & = & x^3 - xu \\
y & = & x^2
\end{array} \tag{1}$$

donde u es la actuación o entrada, x el estado e y la salida. Escoger una linealización que sea controlable.

Item nº 4 (2 puntos)

Una planta con función de transferencia

$$G_p(s) = \frac{1}{(s+3)^2 + 1}$$



debe ser estabilizada en lazo cerrado por el controlador $G_c(s)$ de modo que se verifique:

- \blacksquare Error nulo en régimen permanente en lazo cerrado, para entrada en escalón $(e(\infty)=0)$
- Tiempo de asentamiento para 5 % de 3.34 [s].
- \blacksquare Sobreoscilación de 4.3 %.

Se pide:

- Determinar el controlador de lazo cerrado $G_c(s)$.
- Determinar el pre-filtro si necesario.

Item n° 5 (1 puntos)

Determine la respuesta a escalón unitario de la planta

$$G(s) = \frac{(s+1)}{(s+2)(s+3)}$$

en lazo cerrado con realimentación negativa.

Item n° 6 (1 puntos)

La planta

$$G_p(s) = \frac{1}{(s-2)(s+2)}$$

debe estabilizarse con un controlador con la estructura

$$G_c(s) = K_c \frac{(s^2 + as + 1)}{s}$$

Determinar todos los valores de a, K_c que garantan la estabilidad en lazo cerrado.

Item n° 7 (3 puntos)

Una célula de manufactura está formada por una cinta de transporte de llegada C_1 , una cinta de transporte de salida C_2 , un robot R, un almacén intermediario A de capacidad limitada a n=5 unidades una máquina M_1 que efectúa una operación sobre las piezas que le colocan. El protocolo a seguir es el siguiente:

■ Las piezas que llegan por la cinta C_1 deben ser depositadas por el robot R en el almacén A siempre y cuando haya vacante. En caso de que el almacén A esté lleno, un relé parará la cinta C_1 . El estado de almacén lleno se detecta a través de un sensor S_o .

- \blacksquare La máquina M_1 recibirá piezas del almacén A manipuladas por el robot R.
- \blacksquare Una vez concluida la operación en la máquina $M_1,$ el robot R debe colocar la pieza sobre la cinta C_2
- \blacksquare La cinta C_2 debe ser accionada apenas cuando transporta una pieza. Posee un sensor de peso S_p que detecta la presencia de la pieza.
- \blacksquare Si el almacén Aqueda vacío, suena un alarma Bque se silenciará cuando le llegue alguna pieza.

Se pide elaborar una red de Petri que represente la automatización de la célula.

Fórmulas Útiles

$$SO = e^{-\pi \tan \theta}$$

$$t_a = \frac{1}{\alpha} \ln \left(\frac{20}{\cos \theta} \right)$$

1. Soluciones

Item n° 1 (1 puntos)

Dado un sistema en la forma canónica

$$\dot{x} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{array}\right) x + \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) u$$

el sistema de lazo cerrado proveniente de la realimentación del estado de forma proporcional con

$$u = - \begin{pmatrix} k_0 & k_1 & x_2 \end{pmatrix} u$$

queda:

$$\dot{x} = Ax + B(-Kx) = (A - BK)x = \left(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} k_0 & k_1 & x_2 \end{pmatrix} \right) x$$

o sea

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 - k_0 & a_1 - k_1 & a_2 - k_2 \end{pmatrix} x$$

cuyo polinomio característico es

$$p(s) = s^3 - (a_2 - k_2)s^2 - (a_1 - k_1)s - (a_0 - k_0)$$

se nos pide que el lazo cerrado posea los polos en $\{-3, -3, -3\}$ lo que implica en que el polinomio característico sea

$$p(s) = (s+3)^3 = s^3 + 9s^2 + 27s + 27$$

identificando los coeficientes tendremos:

$$9 = -a_2 + k_2
27 = -a_1 + k_1
27 = -a_0 + k_0$$

 $con a_0 = a_1 = a_2 = 0.$

Item n° 2 (1 puntos)

Para el sistema de la cuestión anterior tendremos las ecuaciones de estado:

$$\begin{array}{rcl}
\dot{x}_1 & = & x_2 \\
\dot{x}_2 & = & x_3 \\
\dot{x}_3 & = & u \\
y & = & x_1
\end{array}$$

Efectuando substituciones tendremos

$$\dot{x}_3 = u = \ddot{x}_2 = y^{(3)}$$

Transformando Laplace para condiciones iniciales nulas obtendremos

$$U(s) = s^3 Y(s)$$

o sea

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^3}$$

Item n^o 3 (1 puntos)

El punto nominal es un punto de equilibrio por tanto, $\ddot{x}_o = x_o^3 - x_o u_o = 0$. Si $u_o = 1$ entonces $x_o = \{0, -1, 1\}$

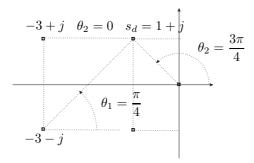
$$\left\{ \begin{array}{lll} \ddot{x} & = & x^3 - xu \\ y & = & x^2 \end{array} \right. \Rightarrow \delta \Rightarrow \left\{ \begin{array}{lll} \delta \ddot{x} & = & 3x_o^2 \delta x - u_o \delta x \pm x_o \delta u \\ \delta y & = & \pm 2x_o \delta x \end{array} \right. \Rightarrow \left\{ \begin{array}{lll} \delta \ddot{x} & = & 2\delta x \pm \delta u \\ \delta y & = & \pm 2\delta x \end{array} \right.$$

Aplicando Laplace se saca

$$\frac{\delta y(s)}{\delta u(s)} = G(s) = \frac{2}{s^2 - 2}$$

Item n° 4 (2 puntos)

Las condiciones de t_a y SO nos llevan a que los polos de lazo cerrado deben



estar ubicados en $s_d=-1\pm j$. Debido a la condición de error nulo en régimen permanente para entrada en escalón debemos incorporar un polo en el origen de coordinadas o sea, consideraremos la función de transferencia de la planta en lazo abierto como

$$G'_p(s) = G_p(s)/s = \frac{1}{s((s+3)^2+1)}$$

Para saber el aporte de fase del compensador se hace:

$$\angle G'_c(s_d) = \pm \pi - \angle G'_p(s_d)$$

de donde resulta que $\angle G_c'(s_d)=0$ pues $\angle G_p'(s_d)=-(\theta_1+\theta_2+\theta_3)=-\pi$. El compensador quedará siendo entonces

$$G_c'(s) = k_c$$

La determinación de k_c es inmediata:

$$|G'_c(s_d)| |G'_p(s_d)| = 1 \Rightarrow k_c = \frac{1}{|G'_p(s_d)|} = |s_d| |s_d + 3 + j| |s_d + 3 - j| = 8$$

El controlador será entonces

$$G_c(s) = \frac{8}{s}$$

La función de transferencia de lazo cerrado queda

$$G_{lc}(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)} = \frac{k_c}{s((s+3)^2 + 1) + k_c} = \frac{k_c}{(s+p)((s+1)^2 + 1)}$$

de donde se concluye que es necesario el pre-filtro

$$G_f(s) = \frac{2}{k_c}(s+p) = \frac{s+4}{4}$$

Item n^o 5 (1 puntos)

La función de transferencia en lazo cerrado es:

$$G(s) = \frac{G_p(s)}{1 + G_p(s)} = \frac{s+1}{s^2 + 6s + 7} = \frac{s+1}{(s+3+\sqrt{2})(s+3-\sqrt{2})}$$

La respuesta a escalón unitario de la planta

$$G(s) = \frac{s+1}{(s+3+\sqrt{2})(s+3-\sqrt{2})}$$

se hace determinando la anti-transformada de

$$G(s)\frac{1}{s} = \frac{A}{s} + \frac{B}{s+3+\sqrt{2}} + \frac{C}{s+3-\sqrt{2}}$$

o sea

$$y(t) = (A + Be^{(-3-\sqrt{2})t} + Ce^{(-3+\sqrt{2})t})\mathbf{1}(t)$$

el cálculo de $A,\,B$ y C se hace por residuos

$$A = \lim_{s \to 0} sG(s) \frac{1}{s}, \ B = \lim_{s \to -3 - \sqrt{2}} (s + 3 + \sqrt{2})G(s) \frac{1}{s}, \ C = \lim_{s \to -3 + \sqrt{2}} (s + 3 - \sqrt{2})G(s) \frac{1}{s}$$

Item nº 6 (1 puntos)

La planta $G_p(s)$ en lazo cerrado con el controlador $G_c(s)$ posee como función de transferencia de lazo cerrado

$$G(s) = \frac{K_c(s^2 + as + 1)}{s(s^2 - 4) + K_c(s^2 + as + 1)}$$

cuyo polinomio característico es

$$p(s) = s^3 + K_c s^2 + (aK_c - 4)s + K_c$$

El criterio de Routh nos proporciona

$$\begin{array}{c|cccc}
3 & 1 & aK_c - 4 \\
2 & K_c & K_c \\
\hline
1 & b_1 & 0 \\
0 & c_1 & 0
\end{array}$$

 $\begin{array}{c|c} \text{con } b_1 = -\frac{1}{K_c} \left| \begin{array}{cc} 1 & aK_c - 4 \\ K_c & K_c \end{array} \right|, \quad c_1 = -\frac{1}{b_1} \left| \begin{array}{cc} K_c & aK_c \\ b_1 & 0 \end{array} \right| = K_c \text{ los valores de } K_c \text{ que estabilizan la planta son los que obedecen} \end{array}$

$$K_c > 0 \quad a > 0$$

 $b_1 > 0 \quad aK_c > 5$

Item n° 7 (2 puntos)

Una posible realización. No se utilizaron los sensores S_o y S_p . En la presente realización se utiliza un procedimiento de parada de C_1 , (\bar{C}_1) asociado a S_o , que podría incluirse también en la cinta C_2 . Es digna de nota la utilización del arco negado como sucedáneo de S_o .

